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LETTER TO THE EDITOR 

Two-dimensional spin models with resonating valence 
bond ground states 

Indrani Bose 
Department of Physics, Bose Institute, 93/1 APC Road, Calcutta-700009, India 

Received 8 January 1990 

Abstract. Two spin models in two dimensions are constructed for which the exact ground 
states can be written down in a certain parameter regime of the Hamiltonian. The ground 
state of the first model is a local resonating valence bond (RVB) state in which not all the spins 
participate in resonance. The ground state is highly degenerate and there is a gap in the 
excitation spectrum. The second model is shown to have a ground state which is a quantum 
spin liquid with all the spins taking part in resonance. The ground state obtained is non- 
degenerate and there is no gap in the excitation spectrum. 

Recently, Bose (1989) has suggested a quasi-one-dimensional spin model for which the 
local RVB state is the exact ground state in a certain parameter regime of the Hamiltonian. 
Several excited states can also be constructed exactly. The model consists of a chain 
of octahedra (instead of ‘octahedron’ a more correct description which will be used 
henceforth is a double pyramid with square or rhombic base (DPSB) for which the length 
of a side of the square base need not be equal to the height of the pyramid). Each DPSB 
has four basal spins and two vertex spins (see figure 1 for notation). The spins interact 
through the Hamiltonian 

where a 6 1, lSil = 4 and y denotes the sum over N / 5  DPSBS of spins, the number of 
spins, N ,  being an integral multiple of five. Also, a periodic boundary condition is 
assumed. For a s 4, the ground state spin configuration is as follows: in each basal plane 
the S = 0 spin state is resonating between two valence bond structures and the vertex 
spins are kept free. The ground state energy is given by E, = -2JN/5 .  The ground state 
is called a local RVB state because resonance is confined to the squares. The ground state 
is highly degenerate, there being 2N’s possible configurations. In the a = 1 limit, the 
ground state is not exactly known and the ground state energy E, satisfies the inequality 
-3JN/5 6 E, 6 2JN/5. In this letter, we give an improved estimate of the upper bound 
of E, and give more details on the chain eigenstates. Next, we generalise the model to 
two new models in 2~ and write down the exact ground states. The ground states are of the 
RVB type. For a = 1, the ground state energy of a single DPSB is -3J. The corresponding 
eigenfunction is a spin singlet which is formed out of two spin triplets, one corresponding 
to the basal spins and the other formed out of the vertex spins. The spin configuration is 
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A B 

Figure 1. Unit cells for models A and B; i, j ,  k ,  I ,  m, n denote spin sites. 

given by 

V 1 = ( t  t t .1 - t t .1 t + t .1 t t - .1 t t N.11 + ( t  i.1.1- J . 1 1  t 
+ i.1 t 1 -  .17'1.1>t t +(.11'1 t - t .1 T L H t  .1+ .1 t ) .  

(2)  
The four-spin configurations in brackets denote the basal spin configurations. One can 
check that q l  is an exact eigenfunction for all values of a, the eigenvalue being 
-J(1 + 2a) .  For a G f ,  the ground state energy of a single DPSB, as already mentioned, 
is -2J,  the corresponding eigenstate (say, q2) is also an exact eigenstate for all values 
of a with the same energy -2J. For this state, since the vertex spins are free, the state 
can be repeated for all the DPSBS in the spin chain whereas in the a =  1 limit, the 
vertex spins are not free in the ground state configuration and one cannot repeat the 
configuration for the whole DPSB chain. For asingle DPSB in the a = *limit, the eigenstates 
ql and q2 become degenerate and a crossing of energy levels occurs. The eigenstate ql 
becomes the ground state for a > 1. In terms of valence bonds, V I  has the structure V1 = 
q3 - q4 - qzwhere q2 = [12] [54] [36],  q3 = [16] [32] [54] and q4 = [14] [56] [32]. The 
top and bottom vertex spins are 1 and 6 and the basal spins are 2,  3 , 4 ,  5 in clockwise 
order. The notation [lm] denotes, the singlet ( l / f i )  (a(l)p(m) - P(l)a(m)) where a 
and p are spin-up and spin-down states, respectively. Now consider again the chain 
model. In the a = 1 limit, the upper bound of the ground state energy as reported in 
Bose (1989) is -2JN/5. This bound can be improved. Consider the chain state which 
has alternate DPSBS in states V1 and q2 respectively (N /5  is even). This is an exact 
eigenstate with energy -2.5JN/5 and so the ground state energy obeys the inequality 
-3JN/5 s E, s -2.5JN/5. An exact solution is yet to be obtained. 

We now describe the 2~ spin models: models A and B. Figure 1 shows the unit cells 
of the two models. Both the models obey periodic boundary conditions. Model A 
consists of DPSB chains in both horizontal ( x )  and vertical ( y )  directions on a square 
network. For a s f, the ground state is again a local RVB state, the vertex spins being 
kept free. The ground state energy E, = -2J X 2N/9 where N is the total number of 
spins in the system, 2N/9  is the total number of square bases and N/9 the number of 
vertex spins ( N  is a multiple of nine). The ground state is highly degenerate. Again, 
several excited states can be constructed exactly as in the chain model (Bose 1989). 
Model B is more interesting. It consists of DPSB chains aligned in the y direction and 
linear chains of vertex spins aligned in the x direction with the vertex spins interacting 
with each other through nearest-neighbour (NN) Heisenberg interactions of strength J .  
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The exact ground state has the following structure in the a 6 1 limit: the square bases 
are in the resonating state v2. The linear chains of vertex spins are the usual AFM 
Heisenberg spin chains for which the exact ground state is given by the Bethe ansatz 
(BA, see Majumdar 1985 for a review). The ground state structure cannot be written 
down explicitly. The ground state is, however, known to be disordered with no staggered 
magnetisation and power-law decay of the correlation function. The ground state can 
be expressed as a linear combination of valence bond states, the valence bonds being of 
all possible lengths. The ground state of model B in the a 6 a limit is thus a global RVB 
state with all the spins in the system participating in resonance. The ground state is a 
quantum spin liquid (QSL), i.e. disordered with power-law decay of the correlation 
function for the vertex spins and ultra-short range correlation for the spins in the square 
bases of the DPSBS. To the author’s knowledge, model B is the first example of a spin 
model for which the exact ground state is known to be a QSL. The proof that this state is 
the ground state is similar to that given for the DPSB chain (Bose 1989). The Hamiltonian 
is written as a sum over DPSB chain Hamiltonians and linear vertex spin chain Ham- 
iltonians for proceeding with the proof. The ground state energy E, = -2JN/5 - 
(In 2 - t )JN/5 .  The first term is contributed by the spins in the square bases. The 
total number of DPSBS in the system is N / 5 ,  so there are N/5 square bases in all; each of 
these has a ground state energy -21. There are N / 5  vertex spins in the system and the 
second term in E, is the exact BA ground state energy corresponding to the chains formed 
by these spins. For a linear chain of spins, the BA ground state has momentum wave 
vector zero if M / 2  is even and JG if M/2 is odd, where M is the number of spins in the 
chain. We assume tHat in model B the number of DPSB chains is even so that the number 
of vertex spins in a linear chain is also even. The ground state thus has momentum wave 
vector (0,O). 

Let us now consider the excited states. A set of exact excited states can be constructed 
in the following manner: in the ground state (a s 4) each square base contributes an 
energy -2J .  Exact excited states can be obtained if the spin configuration is 

Q ,= i ( t  f .1.1+ 4.1 t t - t 1.1 f - .1 t t .1> (3) 
in any one (or more) of the square bases of the model. The spin configuration (3) can be 
written as a linear superposition of nearest-neighbour valence bond configurations, so 
the interaction terms denoting interaction between the vertex and basal spins give zero 
when acting on Q,. The energy corresponding to Q, is zero and the excited state energies 
for the whole model are given by E, = - 2 J ( N / 5  - n) ,  where n is the number of square 
bases having spin configuration Q,. The excited states are separated from the ground 
state by a finite amount of energy. In all the excited states, the linear chains of vertex 
spins are in their ground state. Another set of exact excited states can be constructed by 
keeping the basal spins in their ground state configuration and assuming one (or more) 
linear chain of vertex spins to be in an exact excited state. For the NN Heisenberg spin 
chain, the excitation spectrum is given by the des Cloizeaux and Pearson (DCP, 1962) 
spectrum, the dispersion relation for which is given by 

E = JCJ /sin qx  I (4) 
where qx is the momentum wave vector of the excitation with respect to that of the 
ground state and E denotes the excitation energy. Consider any one of the linear chains 
to be in an excited state. If there are L linear chains, any one of the chains may be in the 
DCP state. By taking a linear combination of such states, one can obtain an excited state 
of momentum wave vector (qx, qy) .  As is evident from (4), there is no gap in the excitation 
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spectrum at the line (n, qy) in momentum space. One may construct other exact excited 
states by considering more than one linear chain to be in an excited state. The ‘gapless- 
ness’ of the exact excitation spectrum holds for any L x M lattice provided M is very 
large ( L  is the number of linear chains in model B and M the number of spins in a linear 
chain, i.e. 5 L M  = N ,  the total number of spins in the system). There is no restriction on 
L as far as the gaplessness of the spectrum is concerned. The ground state of model B 
(a S 4) is non-degenerate and the number of spins per unit cell is five. The Lieb, Schultz 
and Mattis (LSM, 1961) theorem is then applicable (see also Affleck 1988) and the 
spectrum should be gapless. However, the construction of the proof of the LSM theorem 
in 2D assumes that L is odd and also L M. We have given an example of an exactly 
solvable model where the above restriction need not be obeyed. For model A the ground 
state is degenerate and the LSM theorem is inapplicable. 

A possible realisation of the DPSB chain is as follows: in the parent compound 
La2Cu04 of lanthanum-based high-temperature superconductors, consider a particular 
CuOz plane of AFM spins. The next plane of spins is the dual of the first, i.e. the Cu spins 
in the second plane are located above the centres of the underlying square plaquettes in 
the first plane. Choose any one of the square plaquettes of four spins in a CuOz plane. 
The plaquette serves as the base of a double pyramid; the vertices of this pyramid are 
located above and below the centre of the square base. A DPSB chain can be isolated by 
replacing the surrounding Cu spins by non-magnetic impurity atoms. Similarly one can 
isolate an array of spins in La2Cu04 having the same structure as that in model B. To 
conclude, we have constructed ZD spin models for which exact ground states and some 
excited states are known. Model A has a ground state in which not all the spins are 
participating in resonance. The ground state of model B is a quantum spin liquid and 
there is no gap in the excitation spectrum. The RVB model of Anderson (1987) and similar 
other models suggest that high-temperature superconductivity is superconductivity of 
a spin liquid. The Heisenberg AFM in 2D has LRO in the ground state but the order is 
fragile and can be destroyed by the introduction of dopants or by inclusion of further- 
neighbour interactions. In such situations, the ground state is expected to be a QSL. 
Model B is an example of a spin system for which the exact ground state is a QSL. Models 
A and B can be generalised to higher dimensions. In fact, one can construct other spin 
models for which the ground state consists of clusters of spins joined to each other by 
isolated spins. The isolated spins are free if they do not interact with each other or 
assume fixed configurations if they form interacting arrays as in model B. The model 
systems can further be used to study problems like the dynamics of holes in spin systems, 
such studies being of relevance in the context of high-temperature superconductivity. 
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